
POE: The Perl Object Environment

Rocco Caputo
<rcaputo@pobox.com>

July 11, 2003

Abstract

POE is a toolkit for rapidly developing networking applications in Perl. POE’s
powerful multitasking framework lets applications perform several tasks at once.
POE’s message passing capabilities allow applications to be distributed across a
network of machines. POE is mature, robust, and highly considered. POE is free
and open, and can be field-customized for an organization’s unique needs. POE
is well supported by many people, and there exists a number of free extensions
on the Comprehensive Perl Archive Network1.

1Often abbreviated as “CPAN” and pronounced as “See-pan”.

Contents

1 A Rapid Development Toolkit for Networking 2

2 A Powerful Multitasking Framework 3

2.1 Events & Event Handlers . 3

2.2 Multitasking with Events and Handlers 3

2.3 Avoiding the Pitfalls of Forking & Threading 4

2.4 Supporting Forked Processes & Threads 4

3 A Flexible Message Passing Environment 5

3.1 Internal Events . 5

3.2 Distributed Programming with External Events 5

4 A Robust, Tested System 6

5 A Large and Growing Toolbox 6

6 Success Stories 7

6.1 Best New Module . 7

6.2 ActiveState Active Award Nomination 7

6.3 Need To Know . 7

6.4 Linux Magazine . 7

6.5 Morgan Stanley . 8

6.6 Books . 8

6.7 Letters . 8

7 For More Information 11

Copyright c© 2003, Rocco Caputo. All rights reserved.

1

1 A Rapid Development Toolkit for Networking

There’s more than one way to do it.
— Larry Wall

Network applications often follow time-worn programming patterns. POE was
designed to implement those patterns once and for all, reducing the time and
effort wasted by repeatedly rewriting them.

One size doesn’t fit all, though. That’s why POE provides three levels of ab-
straction. Each strikes a different balance between development control and
developer effort. The result is a sweet spot for every task, and the ability for a
single application to mix and match them.

• High-level networking.

POE’s high-level components enable developers to rapidly create and de-
ploy functional network applications with the least amount of effort.

With POE, the networking infrastructure for a basic internet service can
be set up in about 20 lines of Perl. Developers are then free to focus their
efforts on the features that make their applications unique.

• Mid-level networking.

POE includes a mid-level networking toolkit for times when a high-level,
more generic solution is not appropriate. Developers can use this toolkit
to quickly craft customized solutions or to build their own reusable, high-
level components.

• Low-level networking.

Some applications have such unique needs that even POE’s mid-level tools
aren’t a good fit. POE can help there as well.

POE’s low-level functions supply just the basic features needed to write
effective networked applications. At this level, an application can include
entirely custom networking code. Consequently developers have the most
control over how that code is written.

These low-level functions provide a common base for all POE programs.
The result is interoperability at every level of abstraction.

2

2 A Powerful Multitasking Framework

[M]any things which cannot be overcome when they are together,
yield themselves up when taken little by little.

— Plutarch

POE’s multitasking system is based on events and event handlers, rather than
forked processes or threads. Applications that use POE for multitasking are
therefore portable to environments that don’t support forking or threading.

Forked processes and threads are still available when portability isn’t an issue,
but they are an option rather than a requirement.

2.1 Events & Event Handlers

Events are bits of information that represent interesting occurrences. The most
common events represent network I/O, the passage of time, and the status of
managed processes. POE will watch for these and others, and it will notify
applications when they occur.

Event handlers are routines assigned by an application to be called when events
occur. POE ensures that the proper routines are called for each event.

• When there is pending network I/O, POE calls the appropriate handlers to
process it.

• When alarms are due, POE wakes up the application by calling the rou-
tines that were waiting for them.

• When a managed process does something, POE notifies the application
that a result is available.

• And so on.

Event watchers are the parts of POE that detect occurrences and create new
events. POE can be extended to watch for new events through a clearly docu-
mented interface. This is great for the rare occasions when an application must
detect events that POE doesn’t already recognize.

2.2 Multitasking with Events and Handlers

Applications often need to wait for many things at once. For example, a network
server might watch for I/O on several connections while waiting for a handful
of alarms. It may even manage multiple processes in the idle time between
network requests.

POE was designed for this sort of simultaneity. It waits for everything an appli-
cation is interested in, all at once. It notifies the application when things occur,

3

in whatever order they happen. Applications can essentially perform as many
tasks as needed, as those needs arise.

2.3 Avoiding the Pitfalls of Forking & Threading

One of the most frustrating aspects of multi-process programming is how diffi-
cult it is to share data between them. POE runs all its tasks in a single process,
so sharing data between them is as fast and easy as accessing variables.

Threads defeat the memory protections intrinsic to multi-process applications,
making it very easy to share data between tasks. Unless used with the utmost
of care, however, threads can easily corrupt an application’s data and lead to
mysterious—and often spectacular—failures.

POE avoids common threading problems by treating its event handlers as “crit-
ical sections”. Each handler runs uninterrupted, one at a time, until it has com-
pleted, intrinsically locking memory access and eliminating the problems that
would otherwise occur.

Perl’s own threads avoid memory corruption by not sharing data between them
by default. Each new thread must therefore build a copy of Perl’s interpreter
when it’s created, and it must destroy that copy when it is done. This causes
performance and resource problems in large-scale or dynamically threaded pro-
grams. POE’s tasks are lightweight by comparison because they share—rather
than copy—Perl’s interpreter.

2.4 Supporting Forked Processes & Threads

POE also makes it easy to run routines or entire programs in other processes.
POE handles the mechanics of spawning these processes and executing code in
them, allowing developers to focus on working with their results. Third-party
modules like POE::Component::Child make this common task even easier.

Perl’s threading is still young and relatively unsupported, in POE and by the
Perl community at large. Arthur Bergman, an active POE developer and the
author of Perl’s threading system, has recently been awarded a grant by The Perl
Foundation to add threads support to POE. This will further the development of
Perl’s threading and bring manageable thread support to POE.

4

3 A Flexible Message Passing Environment

3.1 Internal Events

Applications based on POE can create ad-hoc events to represent things that
happen within themselves. These events are often used to pass messages from
one part of an application to another.

POE’s message passing is a powerful form of loose coupling that encourages
well-defined, modular systems design. This level of modularity facilitates group
development by providing definite boundaries between the different parts of
an application. Development can easily be performed in parallel once those
boundaries—and the interfaces across them—are defined.

For example, an application may have a logging subsystem that accepts and
records status messages. Other parts of the application can then send it mes-
sages representing their statuses.

3.2 Distributed Programming with External Events

POE’s messages can be transparently passed across networks thanks to a free
third-party module called POE::Component::IKC. This module adds transpar-
ent event passing to POE, letting applications host subsystems on hardware ap-
propriate for their tasks, distribute applications across a farm of machines, or
aggregate information from many sources.

For example, a logging subsystem can be placed on a relatively slow machine
with a lot of disk storage, while business logic is handled from a relatively fast
machine. Or several monitoring nodes throughout an enterprise might ship
status events to a centralized data warehouse for analysis.

POE::Component::IKC even includes a lightweight client that provides an inter-
face between POE based applications and clients that don’t use POE. It is most
commonly used in CGI programs, which must remain nimble yet often need to
access powerful, persistent services.

IKC’s lightweight client can also be used to transport messages between new
POE applications and existing systems. The previous example’s monitoring net-
work may already be implemented. Rather than replace a huge network of
monitoring nodes, they may be extended with IKC’s lightweight client to inject
status messages into a POE based aggregator.

True to TMTOWTDI2, POE::Component::IKC can be reconfigured to transport
messages in different formats. If that isn’t enough, POE’s modular components
and mid-level networking toolkit provide everything needed to create entirely

2“There’s more than one way to do it.” We’re not sure how it’s pronounced.

5

new message-passing systems. POE::Component::Server::SOAP was written
this way.

4 A Robust, Tested System

POE was first openly released in August 1998 after almost two years of internal
development. POE has evolved since then to match the changing practices and
needs of developers.

If you can use Perl, you can use POE. POE is, and has always been, distributed
under the same terms as Perl itself. It is entirely open source, and it has bene-
fited enormously from years of peer review.

POE’s stability has earned the respect of individuals and companies around the
world. Part of this respect comes from POE’s extensive test suite. Over 2000
tests barrage it before each release and during most installs. More are added all
the time.

As part of our commitment to quality, POE comes with a one-step status report-
ing facility. If a problem does occur, developers can—at their option—submit
the results of POE’s tests in their unique environments and situations.

5 A Large and Growing Toolbox

All the tools and engines on earth are only extensions of man’s limbs
and senses.

— Ralph Waldo Emerson

POE includes a large number of tools covering several tasks, and Open Source
developers around the world are constantly publishing free, reusable compo-
nents on the CPAN.

POE continues to become more flexible over time. Currently it includes the
tools to make new event watchers. Soon nearly every aspect of POE will be
customizable and extensible without directly “hacking” the library itself.

New facilities for adding custom APIs are being developed. The first third-party
API is being created right along with them. It will provide deep introspection
into POE’s innermost workings, allowing advanced developers to debug and
tune their applications more effectively than ever before.

6

6 Success Stories

There is a great satisfaction in building good tools for other people
to use.

— Freeman Dyson

6.1 Best New Module

The Perl Conference (now OSCON) bestowed upon POE the “Best New Module”
award in 1999.

6.2 ActiveState Active Award Nomination

Rocco Caputo was nominated for an ActiveState “Active Award” in 2001 for his
work on POE.

— http://www.activestate.com/Corporate/Awards/winners.html

6.3 Need To Know

The perennially hard-to-please folks at “Need To Know” reviewed POE in 2001:

POE can wrap itself around a GTK loop and manage a fistful of
transient, self-contained, self-creating objects. Or it can run a Web-
server as a foreground interface to a bunch of background Perl ob-
jects doing God knows what. Even NTK’s official Perl lamers wrote
an HTTP SOAP server which simultaneously controlled an IRC bot
by using POE to splice a bunch of CPAN modules together—in an
evening. POE is ZOPE without the “Zzzz” of Python. It’s small
enough to understand, and big enough to extend. It is worth a week-
end of your copious free time.

— http://www.ntk.net/2001/05/25/#TRACKING

6.4 Linux Magazine

The cover of Linux Magazine’s October 2002 issue features an article on doing
many things at once with POE. In it, Randal L. Schwartz writes:

POE definitely has some interesting uses, especially for network-
ing code, and it fits well in the “Perl as glue” model.

— http://www.linux-mag.com/2002-10/perl_01.html

7

6.5 Morgan Stanley

At OSCON 2003, Merijn Broeren announced that Morgan Stanley uses POE to
monitor over 9000 Unix machines.

6.6 Books

POE will appear in the upcoming new edition of Perl Cookbook by O’Reilly &
Associates.

O’Reilly will also be publishing an updated Advanced Perl Programming contain-
ing a chapter on POE.

6.7 Letters

Subject: The future

[H]aving accidentally been involved in the early days of the SAMBA
and KDE development effort, I can tell you that through my own interest I
can foresee a very similar and vibrant future for POE. Of all the thousands
of projects out there, POE is the only one that has captured my imagi-
nation in the last year or so. Guessing from my past good luck/intuition,
perhaps it would be wise to start to prepare for the day POE may suddenly
become another high-visibility project.

— Mike Wilkinson

Subject: Re: POE::Wheel::Run and SIGPIPE (thanks)

I just wanted to say thank you for writing such a wonderful frame-
work. You’ve made life as a Perl programmer so much easier. I just rewrote
a piece of software using POE and the code is about 1

8 the size of the orig-
inal code. Not only is it much smaller but it’s so much easier to debug
and extend. The original took about 2 months to write and I was able to
rewrite it in about 6 hours using POE. Now that’s pretty darn cool.

Thanks for your time and contributions. I really appreciate it.

— Todd Caine

Subject: An extremely geeky post

Colour me impressed with POE. POE is an event-based object envi-
ronment for Perl. It provides a framework to handle messaging between
different processes, and allocation of processor time—so, for example, it’s
very good at doing server based things. And the interfaces are designed
really well. I managed to hook it into a different event handler, and ef-
fectively deal with incoming requests quite happily with my first script, in

8

one attempt. That’s after only one evening browsing through the docu-
mentation.

— Matt Webb

Subject: Monitoring. . .

I currently have POE running with multiple FollowTails on Syslog re-
lated log files. Basically, I take in syslog data and translate this log data
into events for our Events display. Right now, I’m running on > 100 dif-
ferent regex patterns and have peaked a bit over 2500 lines / second with
[about] 20% CPU. . . (7 different logfiles. . .)

— Douglas Stevenson

No subject.

I’m using POE to run our school’s Counter-Strike tournament. It’s
AWESOME. You have no idea how much work it saves me. It configures
each server at the beginning of each match, sets up practice times on the
servers, sets the server to go live, takes screenshots at the end of the game,
and reports scores to the SQL database. Considering we’ll have close to a
dozen servers and one administrator (me), this will help a LOT.

— A. Chen

Subject: How POE Saved BayCon TV, Helped Godzilla Destroy Tokyo, and Let
Me Sleep

Every year in San Jose there’s a science fiction convention called Bay-
Con (http://www.baycon.org). A bunch of science fiction fans get to-
gether at a DoubleTree hotel for Memorial Day weekend to meet their
favorite writers and artists and hang out together. For the people who are
actually staying in the hotel, there is an in-hotel TV station (we take over
Channel 4) called BayCon TV, or BCTV for short. We play interviews with
our guests of honor, footage taped during the con, fan videos, old movies,
and slides of science fiction history and trivia. This year, my wife and I
were in charge of it.

When BCTV has been running in the past, the crew would build huge
videotapes full of content, then have to wake up in the middle of the night
to switch them out. If they missed a tape change, or if some footage was
shorter than expected, the entire schedule could be thrown off. Finally,
they couldn’t do things like accept fan videos and digital photos at the
convention—everything had been pretaped!

THE PIT AND THE PENDULUM

Since coming aboard as BCTV’s general technical person, I’d wanted to
try running the station entirely digital. I used Xine, one of the main Linux
movie players, as my content display system. I still needed a scheduling
system, though—something precise enough to show scheduled movies on

9

time, but flexible enough to deal with unplanned events like missing files.
I covered reams of papers with scribbled notes, designing such a system,
until I realized that POE could do it all for me.

Thanks to POE, I could turn the entire system into two agents which I
ran as sessions: the Player and the Scheduler. Personally, I find it easiest
to think of these two as beleagured TV station staffers trying to get some
sleep while keeping the station running. Before Scheduler goes to sleep,
she checks the listings of upcoming programs and sets an alarm to wake
her up right before the next show. When the alarm goes off, she double-
checks the schedule and wakes up Player. She tells Player what program
needs to be played next, sets her alarm for the next scheduled program,
and goes back to sleep. Player, meanwhile, plays the requested program,
then catches some Z’s himself.

Substitute some alarm set() calls for my anthropomorphization above,
and you have my playback system. I had originally imagined a huge sys-
tem using multithreading and frequent time checks. POE let me keep it
under 1000 lines of code. We did have some system glitches, but none
were remotely related to POE. The playback system was rock-solid—and
I hadn’t had a chance to give it a full system test before the convention
began. I took a gamble that POE would be solid, and I was right. Thanks,
Rocco and other POEts.

THINGS TO COME

Our performance this year was good enough that we’ve been asked to
run BCTV next year. I have a host of minor improvements that I’m plan-
ning on making, but the biggest feature improvement will be automatic
fill generation. Scheduling programs can be a pain, and the hardest part
is preventing viewers from having to stare at a blank screen between pro-
grams. To that end, we’re bringing another agent to our little virtual team.
Call him Phil, if you don’t mind. Phil’s got an overhead projector, a boom
box, a few short films, a collection of announcements and slides, and some
crayons. His alarm goes off whenever nothing’s being played over the TV
station, and it’s his job to create filler until the next scheduled event.

All of this functionality should be easy with POE—and would be extremely
difficult without it. So again, thanks. I’ll give updates as the system
becomes more mature. . . and if you’re in the San Jose area over next
Memorial Day, come to BayCon and look for a (hopefully) relaxed and
well-rested man in a Prisoner jacket. That’ll be me, and I’ll be relaxed and
well-rested because of POE.

— Stephen Nelson

10

7 For More Information

POE’s home page

http://poe.perl.org/

POE components on the CPAN

http://search.cpan.org/search?query=POE%3A%3AComponent

POE’s contributed test summaries

http://eekeek.org/poe-tests/

POE’s CPAN tests

http://testers.cpan.org/search?request=dist&dist=POE

POE’s mailing list

POE’s mailing list is a great place for general questions. For subscrip-
tion information, send a blank message to <poe-help@perl.org>.

POE’s lead developer

Rocco Caputo may be reached by e-mail at <rcaputo@pobox.com>.

11

